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LETTER TO THF, EDITOR 

X X Z  model as an effective Hamiltonian for generalized 
Hubbard models with broken q-symmetry 

G Albertinitts, V E Korepintll and A Schadschneidertl 
t Instime for Theoretical Physics, SUNY at Stony Brook, Stony Broak, NY 11794-3840, USA 
$ Physikalisches InstituL UnivenitZt Bono, 53115 Bonn, Germany 

Received 17 January 1995 

Abstract. We wnsider the limit of seong Coulomb amaction for generalized Hubbard models 
with q-symmetry. In this Limit these models are equivalent to the ferromagnetic spin-$ 
Heisenberg quantum spin chain. In order to study the behaviour of the superconducting phase in 
the electronic model under perluhations which break the q-symmetry we investigate the ground 
state of the ferromagnetic non-critical XXZ-chain in the sector with fixed magnetization. It 
tums out to be a large bound state of N magnoos. We find that the perturbations considered 
here lead to the disappearance of the off-diagonal longe-range order. 

There has been a lot of activity in the past few years in the investigation of electronic 
models for superconductivity. In padcular, the so-called 7-pairing mechanism introduced 
by Yang [l] has been quite fruitful for the construction of models with superconducting 
ground states (see e.g. [2]). Although the ground state of the Hubbard model is not of the 
7-pairing type [I] one can construct such models by adding nearest-neighbour interaction 
terms. The first example was found in [3,4]. In [2] it has been shown that, for a large 
class of generalized Hubbard models, the ground state in the limit U + -m is the simplest 
7-pairing state (qt)NIO) with qt = cj cj4cjT. For the supersymmetric Hubbard model 
[3,4] and a special case of the Hirsch model with a correlated hopping interaction [5] the 
complete phase diagram in arbitrary dimensions has been found. It shows two phases with 
7-pairing ground states. Since these states have off-diagonal long-range order (ODLRO) they 
are also superconducting [6]. 

The main aim of this letter is to clarify the effect of 7-symmefq-breaking perturbations 
on the superconducting ,murid state. In order to keep the problem as simple as possible 
we restrict ourselves to the one-dimensional case and the l i t  U + -ca. For strong 
coupling limits, spin models often tum out to be effective Hamiltonians for models of 
correlated electrons. For example, the antiferromagnetic Heisenberg model is known to be 
the effective Hamiltonian for the Hubbard model in the limit U + m at half-filling. In our 
case the effective Hamiltonian is found to be the ferromagnetic Heisenberg chain. 

We perturbate the supersymmetric Hubbard model by changing the value of the nearest- 
neighbour Coulomb interaction V in such a way that the effective Hamiltonian in the limit of 
large attraction will be a ferromagnetic non-critical XXZ model (A > 1, see equation (6)). 
In this regime the gound state is simply the fully polarized ferromagnetic state I t . . . t), 
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and the spectrum has a gap which vanishes in the limit A + 1+. The question of stability of 
the superconducting ground state of the electronic model thus tuns out to be closely related 
to the form of the ground state of the ferromagnetic X X Z  model at fixed magnetization. 

In the following we will be interested in the large-U limit of generalized Hubbard 
models with Hamiltonian 

Here cj, and cj., are the usual electron creation and annihilation operators, i.e. {cj,,, c!,,] = 
I~ 

S;iS,,,, nj, = c;,,c;, is the corresponding number operator and the components of the spin 
operators are given by Sj = $ ( n j r  - n j b ) ,  S; = $(S; +SI:) and S,? = $(S; - S:) I with 
sj' = C!?Cj+, s; = C j J C I t .  t .  

In (21 the conditions under which the Hamiltonian (1) has an q-pairing ground state of  
the form 

with qt = E,!=, q; = E,!=1 cjJcjr t t  were investigated. They were found to occur fo r t  = X, 
2 V = Y , V < O a n d  

-U > 2 m a w ( ~ -  $rz, v+ t~~ + I $ L , I , z v + ~ I ~ I ) .  (3) 
Note that the first two conditions also guarantee the q-symmetry of the Hamiltonian (1) 
with U = 0, i.e. [X(U = 0), qt] = 0. 

For the supersymmetric Hubbard model in [3,4] only the Coulomb interaction U is 
a free parameter. The other interaction constants have fixed values: X = t ,  V = -t/2, 
Y = --I, and Jxy = Jz  = 2t. The other integrable model ( 1 )  has-apart from the Coulomb 
interaction U-only  two non-vanishing interactions constants, namely f = X [5]. 

In the limit of strong attraction (U -+ -00) in the Hamiltonian (1) one expectst, for 
the single-particle excitations, a gap which is proportional to IUI. This means that only the 
motion and interactions of the doubly occupied sites are important. Therefore, all the terms 
in (1) can be dropped except for the pair-hopping term Y and nearest-neighbour Coulomb 
interaction V. Setting Y = -1 (since the q-symmetry implies Y < 0) we then obtain the 
effective Hamiltonian 

with A = 2V/Y = 1. Allowing for an interaction constant A # 1 thus gives a perturbation 
of the original model. In this letter we want to investigate the effects of A > 1 (i.e. 
2V > Y) .  Note that this perturbation destroys the q-symmetry of the original Hamiltonian. 

t This wn be shown explicitly for the exactly solvable wses [7.5]. 
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In order to derive an effective spin Hamiltonian we first make a partial particle-hole 
transformation cjt -+ cJ+ and cjt -+ c j~ .  on the $-spins only. This changes njr -+ njt 
and njj. + 1 - njl and transforms doubly-occupied sites into t-spins and empty sites into 
$-spins. The transformed effective Hamiltonian (4) now reads: 

Using the spin operators introduced above and S,” = $U,’ (where U; are the Pauli matrices, 
a = x ,  y ,  z) the Hamiltonian (5) becomes 

Under the particle-hole transformation-which maps the fermionic vacuum 10) onto the 

(7) 
which is the ground state of the isotropic Heisenberg ferromagnet in the sector with fixed 
magnetization S‘ = N - L 

2: In the following we will determine how the form (7) of the ground state changes for 
A > 1 by proving a conjecture by Gaudin [SI. 

Hamiltonian (6) has long been known to be solvable by means of the Bethe ansatz [9,10]. 
In the sector with a fixed number N of upturned spins, the eigenvalues are determined by 
the equations [10-12] 

ferromagnetic state I J. . . . J.) = $=1 cjrlO)-the q-pairing state (2) translates into 

= (s+lNI & .’. $) 

~~ 

We will consider all possible types of string solutions: 

A Z i  = At) - fiy(n + 1 - 2k) (k = 1,2,. . . , n with n E Z+). (10) 

Periodicity along the real axis allows one to take the real centre of the string, h,“), in the 
restricted range (-~r/2, a/2]. As usual, it is possible to reduce (8) to a set of equations for 
the string centres. Choosing 

r++(.X.a) G ilog (- sin(h ia’) = 2 arctan(tan A coth a) 
sin(A - ia) 

we find 

where M,,, denotes the number of m-strings, I$‘) is integer (half-odd) if L + M, + 1 is even 
(odd) and 
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The energy of an n-string, derived from (9), is 

and, therefore, the total energy, neglecting the immaterial additive constant, is 

m M. sinhny E = 2sinhy 
8=1 coshny -cos2AF) 

where (A:)} are the real string centres. We are interested in the ground state in a sector of 
fixed magnetization where 

In principle one should find all solutions of the Bethe ansatz equations for the string centres 
A$) which are compatible with (16) and compare the respective energies. Yet, for a string 
of length n, the lower and upper bounds of the energy (14) are given by 

sinhny sinhny sinhny 
coshny + 1 coshny -cos2A coshny - 1 

2sinh y < 2sinhy < 2 sinh y 

for A = 1r/2 and A = 0 respectively. We conclude that the ground state must contain 
exactly one shing of length N if we can show that, for any other string configuration 
(MI, Mz, . . . MN-,.  0) with E,"=;' nM, = N, we have 

sinhNy sinhny 
CoshNy - 1 < n=l x M n c o s h n y +  1 '  

First we observe that, in the sector under consideration, any configuration 
(MI, Mz, : . . , MN-I , 0) can be obtained starting from one of the configurations where only 
two strings are present, Mn = 1, M, = 1, n + m = N, and performing the steps in which 
a string is broken into two smaller strings: 

(MI, ..., Mn,, ..., Mn2 ,..., M-*...)+(MI, ..., &,+ 1, ..., M n , + l  ,..., M n - 1  ,... ) 
(19) 

with nl + nz = n. In each step the RHS of (18) 'increases since 

This inequality is guaranteed by the fact that f ( 0 )  = 0 and f " ( x )  e 0 in (0, +CO), where 
f ( x )  = sinhyx/(coshyx+l), and consequently f(xl)+f(xz) > f ( x l  +xz).  We conclude 
that, to demonstrate (IQ, it is sufficient to consider configurations on the RHS made up of 
two strings only. Again concavity of f ( x )  shows that it is sufficient to have 

(21) 
sinhNy sinh y sinh(N - I ) y  < cosh N y  - 1 cosh y + 1 + cosh(N - 1)y + 1 
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and, for fixed y. this is certainly the case for N large enought. This toncludes the proof 
that the ground state is given hy a solution of the Bethe ansatz equations with only one 
N-string, confirming a result predicted by Gaudin [8]. For the isotropic case A = 1 a 
similar result had already been obtained by Bethe [9]. 

The string centre 1'" of the Bethe state with a single N-string (IO) can easily be. 
determined from (12). On a finite lattice there are L solutions 

Z(N)=-1L+I 2 ,-' 2 L + 2  ,..., f L  (22) 
(this holds for L both even and odd) with the ground state at = $L and energy given 
by (14). The energies of all these states become degenerate in the limit L + CO (and 
consequently N + CO) with the limiting value 2 sinh y and energy differences vanishing 
like O(e-Ny). Consequently we have an infinite degeneracy of the ground state. 

Low-lying excitations am given by configurations where the N-string is broken into a 
finite number of shorter strings. In this situation, the 'interaction term' in equation (12) for 
the centres A$) goes to zero with 1/L. Therefore, the energy of each string coincides with 
the bare energy (14) and no dressing needs to be considered. In the most general excited 
state configuration ( M I ,  M2, . . . , M N - ~ )  with E::' nM, = N, the total number of strings 
1::; M,, remains finite and the length of one or more strings has to diverge. Each of these 
diverging-length strings contributes 2 sinh y to the energy, regardless of its position, while 
the finite-length ones have energy (14). It is easily seen that the spectrum has a gap 

A E  Z(cosh y - 1) (23) 
obtained by taking M I  = 1, MN-I = 1. 

A P 1 at fixed magnetization S2 = N - f L  is a bound state of tbe form 
The above results show that the ground state of the ferromagnetic X X Z  chain (6) with 

Here @(xl, . . . , X N )  is a bound-state wavefunction, i.e. it decays exponentially with respect 
to all coordinate differences Ixj - xt[ + CO ( j , I  = 1, ..., N with j # I )  [SI. The 
wavefunction q ( x 1 ,  . . . , X N )  for X I  < xz < . . . e X N  is given by the Bethe ansatz expression 

where SN denotes the permutation group. We now specialize to the state containing exactly 
one N-string. It can easily be. seen that only the term where P is the identity has a non- 
vanishing contribution. Introducing the new variables zo = + cy==, xj and zj = xj+l - xj 

( j  = 1,. . ., N - I), i.e. 
N-1  N-1 

X j  = Z o f  - X k Z k  - X Z k  
k=l k = j  

t Note that for large N the difference 
sinh Ny 

coshNy - 1 
- sinh(N - 1)y  

msh(N - 1)y + 1 

is of order e c N y ,  
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we can finally rewrite the wavefunction as 

where the constant C(A, ZO, N) depends only on A, zo and N .  The form (26) shows directly 
that the wavefunction describes a bound state since it decays exponentially as a function of 
the coordinate differences zj = xj+l - xj. 

For the fermionic model the ground state is then of the form 

This state has no ODLRO. i.e. 
t t  

($Nlc j~Cj fc I1 .CIJ. l$N)  I l - - m  o. 
W N W N )  

This can be seen as follows. 
Using the SU(2) commutation relations for qj = c j t c j ~  [3] it is easy to see that 

where N is a normalization constant. Since $(XI, . . . , X N )  decays exponentially as a 
function of all coordinate differences there is only a significant contribution to the sum 
in (28) from x1 x q  M ... %x+l x j and x1 % X Z  % ... ~ X N - I  M 1. This means that 
for l j  - 21 + CO at least one of the factors in each term and thus the whole sum decays 
exponentially. 

This argument shows that superconductivity in the onedimensional supersymmetric 
Hubbard model is destroyed by a perturbation with A > 1. Instead, the form of the 
ground state suggests a tendency to phase separation. This is not surprising since numerical 
investigations have shown that superconducting phases in electronic models appear quite 
generally in the vicinity of phase separation [13]. In higher dimensions, however, the 
situation is somewhat different. By analogy with the non-ideal Bose gas and preliminary 
results from perturbation theory 1141 we expect the superconducting ground state to be 
stable under the type of perturbation considered here. 
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